Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Antibiotics (Basel) ; 12(2)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2276064

ABSTRACT

Norovirus (NoV) is regarded as a common cause of acute gastrointestinal illness worldwide in all age groups, with substantial morbidity across health care and community settings. The lack of in vitro cell culture systems for human NoV has prompted the use of cultivatable caliciviruses (such as feline calicivirus, FCV, or murine NoV) as surrogates for in vitro evaluation of antivirals. Essential oils (EOs) may represent a valid tool to counteract viral infections, particularly as food preservatives. In the present study, the virucidal efficacy of lemon EO (LEO) against FCV was assessed in vitro. The gas chromatography hyphenated with mass spectrometry (GC/MS) technique was used to reveal the chemical composition of LEO. The following small molecules were detected as major components of LEO: limonene (53%), ß-pinene (14.5%), γ-terpinene (5.9%), citral (3.8%), α-pinene (2.4%), and ß-thujene (1.94%). LEO at 302.0 µg/mL, exceeding the maximum non cytotoxic limit, significantly decreased viral titre of 0.75 log10 TCID50/50 µL after 8 h. Moreover, virucidal activity was tested using LEO at 3020.00 µg/mL, determining a reduction of viral titre as high as 1.25 log10 TCID50/50 µL after 8 h of time contact. These results open up perspectives for the development of alternative prophylaxis approaches for the control of NoV infection.

2.
Animals (Basel) ; 11(12)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1628466

ABSTRACT

Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host's innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented byFCoVand FeHV-1 duringinfection.

3.
Res Vet Sci ; 144: 190-195, 2022 May.
Article in English | MEDLINE | ID: covidwho-1521511

ABSTRACT

Severe clinical diseases associated to αCoronavirus (αCoV) infections were recently demonstrated for the first time in humans and a closely related but distinct canine CoV (CCoV) variant was identified in the nasopharyngeal swabs of children with pneumonia hospitalized in Malaysia, in 2017-2018. The complete genome sequence analysis demonstrated that the isolated strain, CCoV-HuPn-2018, was a novel canine-feline-like recombinant virus with a unique nucleoprotein. The occurrence of three human epidemics/pandemic caused by CoVs in the recent years and the detection of CCoV-HuPn-2018, raises questions about the ability of these viruses to overcome species barriers from their reservoirs jumping to humans. Interestingly, in this perspective, it is interesting to consider the report concerning new CCoV strains with a potential dual recombinant origin through partial S-gene exchange with porcine transmissible gastroenteritis virus (TGEV) identified in pups died with acute gastroenteritis in 2009. The significance of the ability of CCoVs to evolve is still unclear, but several questions arisen on the biology of these viruses, focusing important epidemiological outcomes in the field, in terms of both virus evolution and prophylaxis. The new CCoV-Hupn-2018 should lead researchers to pay more attention to the mechanisms of recombination among CoVs, rather than to the onset of variants as a result of mutations, suggesting a continuous monitoring of these viruses and in particular of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Coronavirus, Canine , Dog Diseases , Animals , Biology , COVID-19/veterinary , Cats , Coronavirus, Canine/genetics , Dog Diseases/epidemiology , Dogs , Humans , Phylogeny , SARS-CoV-2
5.
Res Vet Sci ; 137: 44-47, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1199055

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by a Coronavirus (CoV) (FIPV). In spite of its clinical relevance and impact on feline health, currently the therapeutic possibilities for treatment of FIP in cats are limited. The emergence of the pandemic Severe Respiratory Syndrome (SARS) coronavirus (CoV) type 2 (SARS-CoV-2), etiological agent of the 2019 Coronavirus Disease (COVID-19), able to infect a broad spectrum of animal species including cats, triggered the interest for the development of novel molecules with antiviral activity for treatment of CoV infections in humans and animals. Essential oils (EOs) have raised significant attention for their antiviral properties integrating and, in some cases, replacing conventional drugs. Thymus vulgaris EO (TEO) has been previously shown to be effective against several RNA viruses including CoVs. In the present study the antiviral efficacy of TEO against FIPV was evaluated in vitro. TEO at 27 µg/ml was able to inhibit virus replication with a significant reduction of 2 log10 TCID50/50 µl. Moreover, virucidal activity was tested using TEO at 27 and 270 µg/ml, over the cytotoxic threshold, determining a reduction of viral titre as high as 3.25 log10 TCID50/50 µl up to 1 h of time contact. These results open several perspectives in terms of future applications and therapeutic possibilities for coronaviruses considering that FIPV infection in cats could be a potential model for the study of antivirals against CoVs.


Subject(s)
Coronavirus, Feline/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Thymus Plant/chemistry , Virus Replication/drug effects , Animals , Cats , Cell Line , Humans , Oils, Volatile/chemistry , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL